[Forgot Password]
Login  Register Subscribe

30430

 
 

423868

 
 

247862

 
 

909

 
 

194603

 
 

282

 
 
Paid content will be excluded from the download.

Filter
Matches : 307 Download | Alert*

A timing-based side channel exists in the OpenSSL RSA Decryption implementation, which could be sufficient to recover a ciphertext across a network in a Bleichenbacher style attack. To achieve a successful decryption, an attacker would have to be able to send a very large number of trial messages for decryption. This issue affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP, and RSASVE.

A use-after-free vulnerability was found in OpenSSL's BIO_new_NDEF function. The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally by OpenSSL to support the SMIME, CMS, and PKCS7 streaming capabilities, but it may also be called directly by end-user applications. The function receives a BIO from the caller, prepends a new ...

A double-free vulnerability was found in OpenSSL's PEM_read_bio_ex function. The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (for example, "CERTIFICATE"), any header data, and the payload data. If the function succeeds, then the "name_out," "header," and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The ca ...

A flaw was found in OpenSSL. An invalid pointer dereference on read can be triggered when an application tries to check a malformed DSA public key by the EVP_PKEY_public_check() function, most likely leading to an application crash. This function can be called on public keys supplied from untrusted sources, which could allow an attacker to cause a denial of service.

A NULL pointer vulnerability was found in OpenSSL, which can be dereferenced when signatures are being verified on PKCS7 signed or signedAndEnveloped data. In case the hash algorithm used for the signature is known to the OpenSSL library but the implementation of the hash algorithm is not available, the digest initialization will fail. There is a missing check for the return value from the initial ...

A timing-based side channel exists in the OpenSSL RSA Decryption implementation, which could be sufficient to recover a ciphertext across a network in a Bleichenbacher style attack. To achieve a successful decryption, an attacker would have to be able to send a very large number of trial messages for decryption. This issue affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP, and RSASVE.

A flaw was found in OpenSSL. An invalid pointer dereference on read can be triggered when an application tries to load malformed PKCS7 data with the d2i_PKCS7(), d2i_PKCS7_bio() or d2i_PKCS7_fp() functions. This may result in an application crash which could lead to a denial of service. The TLS implementation in OpenSSL does not call this function, however, third party applications might call thes ...

This is a flaw in the Intel processor execution engine sharing on SMT (e.g. Hyper-Threading) architectures. It can result in leakage of secret data in applications such as OpenSSL that has secret dependent control flow at any granularity level. In order to exploit this flaw, the attacker needs to run a malicious process on the same core of the processor as the victim process.

A use-after-free flaw was found in the Linux kernel's Ext4 File System in how a user triggers several file operations simultaneously with the overlay FS usage. This flaw allows a local user to crash or potentially escalate their privileges on the system. Only if patch 9a2544037600 ("ovl: fix use after free in struct ovl_aio_req") not applied yet, the kernel could be affected.

The host is installed with kernel on RHEL 5, 6, or 7 and is prone to a buffer overflow vulnerability. A flaw is present in the application, which fails to properly handle kernel's virtio-net handled fragmented packets. Successful exploitation could allow attackers to send crafted packets to a target system.


Pages:      Start    1    2    3    4    5    6    7    8    9    10    11    12    13    14    ..   30

© SecPod Technologies